

Quality System Certified Company

TECHNICAL DATA SHEET

PRODUCTS

GK 420+ GK 320+

CHEMICAL INJECTION ANCHOR EPOXY-ACRYLATE RESIN BASED <u>HYBRID RESIN, STYRENE FREE</u> quartz reinforced

Chemical injection anchoring system, with added nanotechnologicy components, high performance for fixing heavy loads in building, carpentry, installations, grouting of steel items in general

Chemical injection anchor based on epoxy-acrylate resin, suitable for fixing pins, rods, threaded bars, rebar to any kind of stone and brick material and specially to SOLID and HOLLOW BRICKS, CONCRETE, MARBLE, GRANITE, ROCK. Easy to use, it fixes tenaciously and permanently any kind of pin and bar. By penetrating into the structure it increases the resistance and the consistency of the wall and it forms an integral block with the support material; this allows also heavy loads, of course by varying the element to be fixed and the depth of anchoring.

The advantage is particularly evident in perforated/hollow building materials where the resin, expanding outside of the appropriate wired bushes (plastic or metal), fills the vacuum zones thus ensuring a highly reliable and economical fastening.

FUNCTION

CHEMICAL FIXING AGENTS FOR CARRYING STRUCTURES SUBJECT TO STATIC LOAD

IINE

BUILDING AND MAINTENANCE

PROFESSIONAL

INDICATION

Stable and durable fixing to building material of any kind of pin, bar, threaded bar and rebar, etc.

It doesn't develop tensions due to the expansion into the base material (support).

Suitable also as filling and repairing mass in recovery and restorations.

MATERIALS

Building materials in general: solid and hollow bricks, concrete, cement, sandstone, facing bricks, natural and artificial stones, wood etc.

HOW TO USE

Drill a hole with appropriate depth and diameter, as indicated by the tables, and clean it carefully removing all trace of dust and friable parts. Before installing the cartridge in the caulking gun, unscrew the threaded cap and remove the pressure cap then screw the static mixer.

Put the cartridge into the suitable caulking gun and extrude; eliminate the first grams of mixture to assure a perfect mixing (the colour of the texture must be homogeneous).

Extrude the resin into the hole (or wired bush) starting from the bottom and filling it 2/3 of its volume. Then insert the fixing element (threaded bar or pin) rotating it clockwise; the resin in excess must come out.

After use remove the cartridge from the caulking gun, remove the mixer. <u>Carefully clean</u> the outlet holes of the cartridge and the pressure cap to avoid any contact between the two components (resin and catalyst). Seal the cartridge re-inserting the eventual pressure cap, and screw the threaded cap.

TEST

Testing in a small, hidden area is recommended before the application to determine consumption, hardening time, etc.

COMPOSITION

Contains epoxy-acrylate resin and catalyst

TECHNICAL INFO

Packaging: coaxial cartridges of 400 ML. and 300 ML.

See page 2 for Technical Data

NOTE

Contains methacrylic monomer. Apply only in well ventilated area while wearing adequate protection. For further information, see product label or Material Safety Data Sheet.

Apply only to clean and dry materials.

Technical Data Sheet: GK420+ - GK320+ styrene free

page 1 of 2

IMPORTANT

In order to ensure perfect mixing, after installing mixer it is important to discard the first small amount that comes out from the mixer to unsure a perfect mixing of the components. After using the cartridge remains perfectly active and the remaining content can be used.

TECHNICAL DATA (TYPICAL VALUE)

DRILLING THE HOLE

TABLE 1	COMPACT MATERIALS		TABLE 2	НО	LLOW MATERIAL	_S
BAR	HOLE SIZE		BAR	WIRED SLEEVE	HOLE	SIZE
DIAMETER mm.	DIAMETER mm.	DEPTH mm.	DIAMETER mm.		DIAMETER mm.	DEPTH mm.
8	10	80	8			
10	12	90				
12	14	110	10	15 x 85	15	90
16	18	125				
20	24	170	12			
24	28	210				

TABLE 3	CONSOLIDATION TIME

TEMPERATURE OF USE	HARDENING TIME	LOAD APPLICATION AFTER
+ 30°C (86°F) + 25°C (77°F) + 20°C (68°F) + 10°C (50°F) + 5°C (41°F)	4 minutes 5 minutes 6 minutes 12 minutes 20 minutes	50 minutes 55 minutes 60 minutes 90 minutes 150 minutes

TABLE 4

Tests effected by the laboratory Istituto Giordano S.p.A. according to the scheme 5.2 of the document ETAG 001 Edition March 2002. Part five: BONDED ANCHORS Test reports: 282893, 282894, 282895, 283787, 283788, 283789

Tests effected by using steel threaded bars C40, installed into concrete blocks of thickness more than 250 mm., without metal reinforcement and made by a concrete having, at the time of the test, an average resistance between 20 and 25 MPa

Threaded bar	hole wet or dry	hole Ø mm.	hole depth mm.	kind of test	breaking load [N]
M 8	dry	10	80	Extraction Cut	19013 14725
M 12	dry	14	110	Extraction Cut	39646 34763
M 12	wet	14	110	Extraction	40906
M 16	dry	18	125	Extraction Cut	53278 59688
M 24 **	dry	28	210	Extraction Cut	147802 125208
M 24 **	wet	28	210	Extraction	168215

^{**} Test effected by using a concrete block with thickness over 420 mm. and having, at the time of the test, an average resistance of 27.6 MPa

LIMITATION OF LIABILITY The data provided derive from published information or from our own laboratory tests. The information provided here must be considered as a guideline and not as any form of performance guarantee. Liability for defective products, when verified, is limited to refund of the purchase price since application of the product is beyond the control of the manufacturer or supplier